Cultivated kelp as a possible source for feed protein

Jorunn Skjermo, SINTEF Fisheries and Aquaculture, Trondheim, Norway

Co-authors: Silje Forbord, Aleksander Handå, Kristine Steinhovden, Vera Kristinova, Rasa Slizyte (SINTEF Fisheries and Aquaculture), Sophie Fische (NTNU), Michael Roleda (Nibio), Rosa Jonsdottir, (Matis), Ronan Pierre (Ceva)
Promac – Energy efficient processing of macroalgae in blue-green value chains
District heating need in Ålesund
R&D-partners

- Møreforsking
- SINTEF
- NIBIO
- NTNU
- Norwegian University of Science and Technology
- Norwegian University of Life Sciences
- Matis
- Ceva
- SLU
Industry partners

- TAFJORD
- Felleskjøpet
- Firmenich
- Hortimare
- THE NORTHERN COMPANY
- MARINOX
- LEGASEA
- Orkla Foods Norge
Promac – PROCESS

2015-2018

Cultivation and harvest

Pre-treatment (ensiling, preservation, rinsing, etc.)

Drying

Processing

Fresh drying (<24 hours)

Batch drying

Non-drying processes

Feed products
Human food products
Bioeconomy ingredients

Oterhals et al., unpubl.
Cultivated kelp as potential feedstock for proteins

• Potential
 – Two fast growing biomass producers in *Saccharina latissima* and *Alaria esculenta*

• Challenges
 – Narrow window for harvesting due to biofouling
 – Scarce knowledge about effects of season on protein & amino acids in these kelps
Comparative study

Species
- *S. latissima*
- *A. esculenta*

Season for harvest
- MAY
- JUNE

Origin
- Cultivated (kelp)
- Wild

Yield
- Biomass
- Protein
- Amino acids

Discuss use in salmon feed
Biomass production

- Saccharina 2 m
- Saccharina 5 m
- Saccharina 8 m
- Alaria 2 m
- Alaria 5 m
- Alaria 8 m

(Phot: SINTEF)
Protein content

Protein % (of dw; sum AA)

- Saccharina, wild
- Saccharina, cultivated
- Alaria, wild
- Alaria, cultivated

JUNE MAY
Amino acids in Saccharina, cultivated

30-80 g amino acids /m cultivation rope in sea

essential aa

<table>
<thead>
<tr>
<th>Glutamic acid + Glutamine</th>
<th>Aspartic acid + Asparagine</th>
<th>Alanine</th>
<th>Leucine</th>
<th>Phenylalanine</th>
<th>Valine</th>
<th>Lysine</th>
<th>Glycine</th>
<th>Serine</th>
<th>Isoleucine</th>
<th>Arginine</th>
<th>Threonine</th>
<th>Proline</th>
<th>Tyrosine</th>
<th>Cystine (Cys-Cys)</th>
<th>Methionine</th>
<th>Histidine</th>
<th>Tryptophan</th>
<th>Taurin</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAY</td>
<td></td>
<td>JUNE</td>
<td></td>
</tr>
</tbody>
</table>

AA % (dw)
Amino acids in Alaria, cultivated

Not essential aa
Amino acids in Alaria, cultivated

10-30 g amino acids per m cultivation rope in sea

essential aa

Amino Acid Composition

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutamic acid + Glutamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartic acid + Asparagine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenylalanine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoleucine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threonine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arginine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystine (Cys-Cys)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyrosine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histidine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methionine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taurin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tryptophan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: AA % (dw)
Cultivated vs wild Alaria

Alaria, JUNE

- AA % (dw)

Cultivated
Wild

- Alamine
Glutamic acid + Glutamine
Aspartic acid + Asparagine
Leucine
Lysine
Phenylalanine
Valine
Serine
Glycine
Isoleucine
Threonine
Arginine
Cystine (Cys-Cys)
Proline
Tyrosine
Ammonia
Histidine
Methionine
Taurine
Tryptophan
Harvest in JUNE

Saccharina and Alaria, JUNE

AA % (dw)

- Glutamic acid + Glutamine
- Aspartic acid + Asparagine
- Alanine
- Leucine
- Glycine
- Lysine
- Valine
- Phenylalanine
- Serine
- Isoleucine
- Threonine
- Arginine
- Proline
- Cystine (Cys-Cys)
- Tyrosine
- Ammonia
- Methionine
- Histidine
- Tryptophan
- Taurin

Saccharina and Alaria
Expected growth in Norwegian salmon production – and in feed demand

DKNVS/NTVA (Olafsen et al., 2012)
Amino acids for salmon feed

AA-profiles in salmon feed, Saccharina and Alaria

All essential aa present in the kelps
Not balanced
- Met: 1:5 (Saccharina), 1:3 (Alaria)
- Lys: 1:3 (Saccharina), 1:2 (Alaria)

Marine grower feed, 40–45% crude protein
- Saccharina JUNE, AA% (dw)
- Alaria JUNE, AA % (dw)
Species:

- *S. latissima* 3X higher biomass production.
 - Poor seedlings quality of *A. esculenta* (?)

- *A. esculenta* is higher than *S. latissima* in:
 - Total protein
 - All amino acids
Season:

- **A. esculenta**
 - Total protein highest in JUNE
 - Essential AA highest in MAY

- **S. latissima**
 - Total protein and essential AA highest in MAY

- **Biomass**
 - More than doubles from MAY to JUNE
As protein source for feed (salmon):

- All essential amino acids present
- AA profile is not balanced
 1. Add extra AA
 2. Use excess AA as energy
- The content is low... (10-80g protein/m)
MILLING and HEATING

Photo: SINTEF
HYDROLYSIS

Photo: SINTEF
PRODUCT

Photo: SINTEF
PRODUCT

Photo: SINTEF
Thank you 😊